Periodontally Accelerated Tooth Movement: A Review
Abstract
The comprehensive orthodontic treatment usually lasts between 18-24 months. The treatment duration depends on the patient and the related complexities of the treatment. The longer treatment duration escalates the risk of dental caries, esthetic problems such as white spot lesions or leads to root resorption and periodontal destruction. There are various approaches to modulate the tooth movement that will shorten the orthodontic treatment time. These approaches manipulate the pathways that alter the tooth movement and the alveolar housing. The prevailing interdisciplinary alliances of periodontics for accelerating orthodontic tooth movement consists of procedures broadly categorized as; (A) Surgical mode that includes Periodontally Accelerated Osteogenic Orthodontics (PAOO) with classic Corticotomy, Piezocision, Modified Corticotomy, and Laser Corticotomy; (B) Mechanical or physical mode that includes Low-level laser therapy (LLLT), Electric current Vibration, Cyclic vibration and (C) Chemical modes that includes Osteocalcin and Corticosteroids, Parathyroid hormone (PTH), Thyroxin, Relaxin, Vitamin D3. Each of these procedures intends to accelerate the orthodontic tooth movement and contributes to curtail the conventional orthodontic treatment time. The ongoing development moves orthodontic therapy nearer to the goal of being optimal, with teeth being moved competently, not leading to any patient discomfort or damage to the teeth or their supporting structure. This review describes the surgical, chemical and mechanical, or physical modalities that accelerate the tooth movement and effectively shortens the orthodontic treatment time.
References
Iseri H, Kurt G, Kisnisci R. Biomechanics of Rapid Tooth Movement by Dentoalveolar Distraction Osteogenesis. Current Therapy in Orthodontics, 2010.p.321-327. Doi: https://doi.org/10.1016/B978-0-323-05460-7.00025-9
Alansari S, Sangsuwon C, Vongthongleur T, Kwal R, Teo MT, Lee Y B, Nervina J, Teixeira C, Alikhani M. Biological principles behind accelerated tooth movement. Seminars in Orthodontics, Vol 21, No 3 (September), 2015: pp 151–161. doi: https://doi.org/10.1053/j.sodo.2015.06.001
Sirisha K, Srinivas M, Ravindranath D, Gowd P. Wilckodontics - A Novel Synergy in Time to Save Time. J ClinDiagn Res. 2014; Vol-8(1): 322-325 Doi: https://doi.org/10.7860/jcdr/2014/7576.3978
Goyal A, Kalra J, Bhatiya P, Singla S, Bansal P. Periodontally accelerated osteogenic orthodontics (PAOO) - a review. J ClinExp Dent. 2012 Dec 1; 4(5):e292-6. doi: https://doi.org/10.4317/jced.50822
Li, Y., Jacox, L. A., Little, S. H., &Ko, C.-C. (2018). Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences, 34(4), 207–214. doi: https://doi.org/10.1016/j.kjms.2018.01.007
Kevin G, Murphy M, Wilcko T, Wilcko W, Ferguson D. Periodontal Accelerated Osteogenic Orthodontics: A Description of the Surgical Technique. J Oral Maxillofac Surg 67:2160-2166, 2009. doi: https://doi.org/10.1016/j.joms.2009.04.124
Suya H. Corticotomy in orthodontics. In: Hosl E., Baldauf A., editors. Mechanical and Biological Basis in Orthodontic Therapy. HuthigBuchVerlag; Heidelberg, Germany: 1991. pp. 207–226.
Vercellotti T, Podesta A. Orthodontic microsurgery: a new surgically guided technique for dental movement. Int J Periodontics Restorative Dent. 2007 Aug; 27(4):325-31. http://www.quintpub.com/userhome/prd/prd_27_4_Vercellotti_3.pdf
Dibart S, Sebaoun JD, Surmenian J. Piezocision: a minimally invasive, periodontally accelerated orthodontic tooth movement procedure. Compend Contin Educ Dent. 2009 Jul-Aug; 30(6):342-4, 346, 348-50. https://pubmed.ncbi.nlm.nih.gov/19715011/
Germeç D, Giray B, Kocadereli I, Enacar A. Lower incisor retraction with a modified corticotomy. Angle Orthod. 2006 Sep; 76(5):882-90. doi: https://doi.org/10.1043/0003-3219(2006)076[0882:lirwam]2.0.co;2
Seifi, Massoud & Younessian, Farnaz & Ameli, Nazila. (2012). The Innovated Laser Assisted Flapless Corticotomy to Enhance Orthodontic Tooth Movement. Journal of Lasers in Medical Sciences. 3-1,20-25; doi: https://doi.org/10.22037/2010.V3I1.2658
Mahmoudzadeh, M., Poormoradi, B., Alijani, S., Farhadian, M., & Kazemisaleh, A. Efficacy of Er, Cr Laser incision Corticotomy in Rapid Maxillary Canine Retraction: A Split-Mouth Randomized Clinical Trial. Lasers Med Sci. 2020: 11(4), 442–449. https://doi.org/10.34172/jlms.2020.69
Alfawal, Alaa M H et al. “Evaluation of piezocision and laser-assisted flapless corticotomy in the acceleration of canine retraction: a randomized controlled trial.” Head & face medicine vol. 14,1 4. 17 Feb. 2018, doi: https://doi.org/10.1186/s13005-018-0161-9
Chen, Miao-Jing; Chen, Shih-Chieh; Cheng, Jung-Hsuan; and Tseng, Yu-Chuan DS, MDS, Ph.D (2020) "Surgical Methods to Accelerate Tooth Movement," Taiwanese Journal of Orthodontics: Vol. 32: Iss. 2 , Article 2. https://www.tjo.org.tw/tjo/vol32/iss2/2
Shipley, T., Farouk, K., & El-Bialy, T. (2019). Effect of high-frequency vibration on orthodontic tooth movement and bone density. Journal of orthodontic science, 8, 15. https://doi.org/10.4103/jos.JOS_17_19
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol. 2019 Feb; 95(2):120-143. doi: https://doi.org/10.1080/09553002.2019.1524944
Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, Lopes-Martins RA, Bjordal JM. Low-level laser therapy induces dose-dependent reduction of TNFα levels in acute inflammation. Photomed Laser Surg. 2006 Feb; 24(1):33-7. doi: https://doi.org/10.1089/pho.2006.24.33
Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009; 88: 597-608. doi: https://doi.org/10.1177/0022034509338914
Miles P, Fisher E. Assessment of the changes in arch perimeter and irregularity in the mandibular arch during initial alignment with the acceledent aura appliance vs. no appliance in adolescents: A single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop. 2016; 150:928–36. doi: https://doi.org/10.1016/j.ajodo.2016.07.016
Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, et al. Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucletide levels by combined force and electric current. Am J Orthod 1980; 77: 33-47. doi: https://doi.org/10.1016/0002-9416(80)90222-5
Zengo AN, Bassett CA, Pawluk RJ, Prountzos G. In vivo bioelectric potentials in the dentoalveolar complex. Am J Orthod 1974; 66: 130-139. doi: https://doi.org/10.1016/0002-9416(74)90232-2
Kim DH, Park YG, Kang SG. The effect of electrical current from a micro-electrical device on tooth movement. Korean J Orthod 2008; 38: 337-346. https://synapse.koreamed.org/articles/1043563
Chaturvedi, T. (2020). Effect of Electrical Stimulation on Orthodontic Tooth Movement: A Systematic Review. https://www.researchgate.net/profile/T-Chaturvedi/publication/339052072_Effect_of_Electrical_Stimulation_on_Orthodontic_Tooth_Movement_A_Systematic_Review/links/5e3ade30299bf1cdb911273d/Effect-of-Electrical-Stimulation-on-Orthodontic-Tooth-Movement-A-Systematic-Review.pdf
Keerthana, P., Diddige, R., & Chitra, P. (2020). Performance comparison of vibration devices on orthodontic tooth movement - A systematic review and meta-analysis. Journal of oral biology and craniofacial research, 10(4), 814–823. https://doi.org/10.1016/j.jobcr.2020.10.013
Miles P, Fisher E, Pandis N. Assessment of the rate of premolar extraction space closure in the maxillary arch with the AcceleDent Aura appliance vs no appliance in adolescents: A single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop. 2018 Jan; 153(1):8-14. doi: https://doi.org/10.1016/j.ajodo.2017.08.007
Woodhouse NR, DiBiase AT, Johnson N, Slipper C, Grant J, Alsaleh M, et al. Supplemental vibrational force during orthodontic alignment: A randomized trial. J Dent Res. 2015; 94:682–9. doi: https://doi.org/10.1177/0022034515576195
DiBiase AT, Woodhouse NR, Papageorgiou SN, Johnson N, Slipper C, Grant J, et al. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: A multicenter randomized clinical trial. Am J Orthod Dentofacial Orthop. 2018; 153:469–800000. doi: https://doi.org/10.1016/j.ajodo.2017.10.021
Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on tooth movement and patient discomfort: A prospective randomised clinical trial. Aust Orthod J. 2012; 28:213–218. https://search.informit.org/doi/10.3316/informit.961968537097161
Kobayashi Y, Takagi H, Sakai H, Hashimoto F, Mataki S, Kobayashi K, Kato Y. Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod. 1998 Jun; 68(3):259-66. doi: https://doi.org/10.1043/0003-3219(1998)068%3C0259:eolaoo%3E2.3.co;2
Michelogiannakis D, Al-Shammery D, Rossouw PE, Ahmed HB, Akram Z, Romanos GE, Javed F. Influence of corticosteroid therapy on orthodontic tooth movement: A narrative review of studies in animal-models. Orthod Craniofac Res. 2018 Nov; 21(4):216-224. doi: https://doi.org/10.1111/ocr.12243
Soma S, Iwamoto M, Higuchi Y, Kurisu K. Effects of continuous infusion of PTH on experimental tooth movement in rats. J Bone Miner Res. 1999 Apr; 14(4):546-54. doi: https://doi.org/10.1359/jbmr.1999.14.4.546
Asiry, M. A. Biological aspects of orthodontic tooth movement: A review of literature. Saudi J Biol Sci. 2018; 25(6): 1027–1032. doi: https://dx.doi.org/10.1016%2Fj.sjbs.2018.03.008
Seifi M, Hamedi R, Khavandegar Z. The Effect of Thyroid Hormone, Prostaglandin E2, and Calcium Gluconate on Orthodontic Tooth Movement and Root Resorption in Rats. J Dent (Shiraz). 2015; 16(1 Suppl):35-42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476115/
Kawakami M. [Effects of local application of 1, 25 (OH)2D3 on experimental tooth movement in rats]. Osaka Daigaku Shigaku Zasshi. 1990 Jun; 35(1):128-46. Japanese. https://pubmed.ncbi.nlm.nih.gov/2135402/
Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004; 22(6):541-6. doi: https://doi.org/10.1007/s00774-004-0521-3
